Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(13): e2308270, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38268432

RESUMEN

Some rodlike organic molecules exhibit exceptionally high layered crystallinity when composed of a link between π-conjugated backbone (head) and alkyl chain (tail). These molecules are aligned side-by-side unidirectionally to form self-organized polar monomolecular layers, providing promising 2D materials and devices. However, their interlayer stacking arrangements have never been tunable, preventing the unidirectional arrangements of molecules in whole crystals. Here, it is demonstrated that polar/antipolar interlayer stacking can be systematically controlled by the alkyl carbon number n, when the molecules are designed to involve effectively weakened head-to-head affinity. They exhibit remarkable odd-even effect in the interlayer stacking: alternating head-to-head and tail-to-tail (antipolar) arrangement in odd-n crystals, and uniform head-to-tail (polar) arrangement in even-n crystals. The films show excellent field-effect transistor characteristics presenting unique polar/antipolar dependence and considerably improved subthreshold swing in the polar films. Additionally, the polar films present enhanced second-order nonlinear optical response along normal to the film plane. These findings are key for creating polarity-controlled optoelectronic materials and devices.

2.
J Phys Chem B ; 127(48): 10422-10433, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38015036

RESUMEN

Single-ion conducting liquid electrolytes are key to achieving rapid charge/discharge in Li secondary batteries. The Li+ transference (or transport) numbers are the defining properties of such electrolytes and have been discussed in the framework of concentrated solution theories. However, the connection between macroscopic transference and microscopic ion dynamics remains unclear. Molecular dynamics simulations were performed to obtain direct information regarding the microscopic behaviors in highly concentrated electrolytes, and the relationships between these behaviors and the transference number were determined under anion-blocking conditions. Various solvents with different donor numbers (DNs) were used along with a Li salt of the weakly Lewis basic bis(fluorosulfonyl)amide anion for electrolyte preparation. Favorable ordered Li+ structuring and a continuous Li+ conduction pathway were observed for the fluoroethylene carbonate-based electrolyte due to its low DN. The properties were less pronounced at higher DNs, e.g., for the dimethyl sulfoxide-based electrolyte. The τLi-solventlife/τdipolerelax ratio was introduced as a factor for ion dynamics, and the two mechanisms of ion transport were considered an exchange mechanism (τLi-solventlife/τdipolerelax < 1) and a vehicle mechanism (translational motion of solvated Li+) (τLi-solventlife/τdipolerelax ≥ 1). Vehicle-type transport was dominant with high DNs, while exchangeable transport was preferable at lower DNs. These findings should aid the further selection of solvents and Li salts to prepare single-ion conducting electrolytes.

3.
J Phys Chem B ; 127(28): 6333-6341, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37428625

RESUMEN

The parameters of the polarizable force field used for molecular dynamics simulations of Li diffusion in high-concentration lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) sulfone (sulfolane, dimethylsulfone, ethylmethylsulfone, and ethyl-i-propylsulfone) solutions were refined. The densities of the solutions obtained by molecular dynamics simulations reproduced well the experimental values. The calculated concentration, temperature, and solvent dependencies of self-diffusion coefficients of ions and solvents in the mixtures well reproduce the experimentally observed dependencies. Ab initio calculations show that the intermolecular interactions between Li ions and four sulfones are not largely different. Conformational analyses show that sulfolane can change the conformation more easily owing to lower barrier height for pseudorotation compared to the rotational barrier heights of diethylsulfone and ethylmethylsulfone. Molecular dynamics simulations indicate that the easy conformation change of solvent affects the rotational relaxation of the solvent and the diffusion of Li ion in the mixture. The easy conformation change of sulfolane is one of the causes of faster diffusion of Li ion in the mixture of Li[TFSA] and sulfolane compared to the mixtures of smaller dimethylsulfone and ethylmethylsulfone.

4.
Phys Chem Chem Phys ; 25(16): 11331-11337, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37013404

RESUMEN

Understanding the interactions between the adsorbate and substrate is critical in basic and advanced scientific fields, including the formation of well-organised nanoarchitectures via self-assembly on surfaces. In this study, the interactions of n-alkanes and n-perfluoroalkanes with circumcoronene were studied using dispersion-corrected density functional theory calculations as models of their adsorption on graphite. The interactions of n-perfluoroalkanes with circumcoronene were significantly weaker than those of the corresponding n-alkanes, e.g. the calculated adsorption energies of n-perfluorohexane and n-hexane were -9.05 and -13.06 kcal mol-1, respectively. The dispersion interactions were the major source of attraction between circumcoronene and the adsorbed molecules. Larger steric repulsion of n-perfluoroalkanes compared to those of n-alkanes increased their equilibrium distances from circumcoronene and decreased the dispersion interactions, resulting in weaker interactions. The interactions between two adsorbed n-perfluorohexane molecules and those of n-hexane molecules were -2.96 and -2.98 kcal mol-1, respectively, which are not negligible in the stabilisation of adsorbed molecules. The geometries of adsorbed n-perfluoroalkane dimers revealed that the equilibrium distance between two n-perfluoroalkane molecules did not match the width of the six-membered rings in circumcoronene, in contrast to that between n-alkanes. The lattice mismatch also destabilised the adsorbed n-perfluoroalkane dimers. The difference in the adsorption energy between flat-on and edge-on orientations of n-perfluorohexane was smaller than that of corresponding n-hexane.

5.
Phys Chem Chem Phys ; 25(15): 10917-10924, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37014652

RESUMEN

Well-ordered molecular arrangement on surfaces is fundamental for fabrication of functional molecular devices which are of particular interest in nanotechnology. In addition to nano-manufacturing, the production of useful materials from natural resources has recently attracted increasing attention. Herein, we focused on the two-dimensional (2D) self-assemblies of curcumin derivatives. The effects of the number, length, and substitution of the alkyl chains on the 2D structures of curcumin derivatives were studied by scanning tunnelling microscopy at the highly oriented pyrolytic graphite/1,2,4-trichlorobenzene interface. Curcumin derivatives containing both methoxy and alkoxy chain groups and those possessing four alkoxy chains exhibit linear structures with and without interdigitation of alkoxy chains, respectively. These 2D structure formations are independent of the alkyl chain length. However, the bisdemethoxycurcumin derivatives periodically form stair-like and linear structures depending on the alkyl chain length, which indicates the existence of the odd-even effect. These results suggest that the 2D structural modulation of curcumin derivatives caused by the odd-even effect can be tuned by the number of alkyl chain substituents. The appearance and disappearance of the odd-even effect in curcumin derivatives are discussed in terms of the balance between intermolecular and molecule-substrate interactions.

6.
Chem Rec ; 23(8): e202200272, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36782073

RESUMEN

The elucidation of the factors determining liquid structures and transport properties of ionic liquids is important for the design and development of ionic liquid electrolytes. This personal account introduces the importance of computational methods for studying ionic liquids. Molecular dynamics simulations provide detailed information on liquid structures of ionic liquid such as the structures of solvated cation complexes in equimolar mixtures of glymes and Li[TFSA] and the effects of the charges of electrode on liquid structure near the electrode. Ab initio calculations reveal that the magnitude of the attraction between ions and conformational flexibility ions play important roles in determining transport properties of ionic liquids. First principle molecular dynamics simulations elucidate why solvated cation complex is stable in the equimolar mixtures, although the Li+ -[TFSA]- interaction is greater than Li+ -glyme interaction.

7.
Phys Chem Chem Phys ; 25(9): 6970-6978, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36804678

RESUMEN

Electrolytes that transport only Li ions play a crucial role in improving rapid charge and discharge properties in Li secondary batteries. Single Li-ion conduction can be achieved via liquid materials such as Li ionic liquids containing Li+ as the only cations because solvent-free fused Li salts do not polarise in electrochemical cells, owing to the absence of neutral solvents that allow polarisation in the salt concentration and the inevitably homogeneous density in the cells under anion-blocking conditions. However, we found that borate-based Li ionic liquids induce concentration polarisation in a Li/Li symmetric cell, which results in their transference (transport) numbers under anion-blocking conditions (tabcLi) being well below unity. The electrochemical polarisation of the borate-based Li ionic liquids was attributed to an equilibrium shift caused by exchangeable B-O coordination bonds in the anions to generate Li salts and borate-ester solvents at the electrode/electrolyte interface. By comparing borate-based Li ionic liquids containing different ligands, the B-O bond strength and extent of ligand exchange were found to be directly linked to the tabcLi values. This study confirms that the presence of dynamic exchangeable bonds causes electrochemical polarisation and provides a reference for the rational molecular design of Li ionic liquids aimed at achieving single-ion conducting liquid electrolytes.

8.
ACS Appl Mater Interfaces ; 14(40): 45403-45413, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174225

RESUMEN

Lithium-sulfur (Li-S) batteries can theoretically deliver high energy densities exceeding 2500 Wh kg-1. However, high sulfur loading and lean electrolyte conditions are two major requirements to enhance the actual energy density of the Li-S batteries. Herein, the use of carbon-dispersed highly concentrated electrolyte (HCE) gels with sparingly solvating characteristics as sulfur hosts in Li-S batteries is proposed as a unique approach to construct continuous electron-transport and ion-conduction paths in sulfur cathodes as well as achieve high energy density under lean-electrolyte conditions. The sol-gel behavior of carbon-dispersed sulfolane-based HCEs was investigated using phase diagrams. The sol-to-gel transition was mainly dependent on the amount of the carbonaceous material and the Li salt content. The gelation was caused by the carbonaceous-material-induced formation of an integrated network. Density functional theory (DFT) calculations revealed that the strong cation-π interactions between Li+ and the induced dipole of graphitic carbon were responsible for facilitating the dispersion of the carbonaceous material into the HCEs, thereby permitting gel formation at high Li-salt concentrations. The as-prepared carbon-dispersed sulfolane-based composite gels were employed as efficient sulfur hosts in Li-S batteries. The use of gel-type sulfur hosts eliminates the requirement for excess electrolytes and thus facilitates the practical realization of Li-S batteries under lean-electrolyte conditions. A Li-S pouch cell that achieved a high cell-energy density (up to 253 Wh kg-1) at a high sulfur loading (4.1 mg cm-2) and low electrolyte/sulfur ratio (4.2 µL mg-1) was developed. Furthermore, a Li-S polymer battery was fabricated by combining the composite gel cathode and a polymer gel electrolyte.

9.
Phys Chem Chem Phys ; 24(28): 17088-17097, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35791703

RESUMEN

The fabrication of well-organised molecular assemblies on surfaces is fundamental for the creation of functional molecular systems applicable to nanoelectronic and molecular devices. In this study, we investigated the effect of substitution positions of alkyl chains on the formation of halogen-bonded molecular networks. For this purpose, building blocks with different head groups (i.e., pyridine (Py) or tetrafluoro-iodobenzene (FI)) were substituted with hexadecyloxy chains at either the 3,4- or the 3,5-positions. The two-dimensional assembly of each compound as a single-component system was studied using scanning tunnelling microscopy (STM) at the highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface. All compounds displayed linear structures in which the alkyl chains were aligned along one of the HOPG axes. In the exceptional case of FI bearing hexadecyloxy chains at the 3,5-positions (denoted as FI-3,5), hexagonal arrays were tentatively formed owing to the triangular molecular arrangement induced by halogen bonding. A bicomponent blend of Py-3,4/FI-3,5 (1 : 1 molar ratio) enabled the formation of a honeycomb structure, whereas that of Py-3,5/FI-3,4 (1 : 1 molar ratio) produced a rectangular assembly that was periodically arranged in a zig-zag fashion. Finally, based on the observed blend ratio dependence, the formation of these different two-dimensional structures by variation in the substitution positions of the alkyl chains was discussed in terms of molecule-molecule and molecule-substrate interactions.

10.
ACS Omega ; 7(21): 17732-17740, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35664591

RESUMEN

The design and fabrication of lithium secondary batteries with a high energy density and shape flexibility are essential for flexible and wearable electronics. In this study, we fabricated a high-voltage (5 V class) flexible lithium polymer battery using a lithium nickel manganese oxide (LiNi0.5Mn1.5O4) cathode. A LiNi0.5Mn1.5O4-hybridized gel polymer cathode (GPC) and a gel polymer electrolyte (GPE) membrane, both containing a sulfolane (SL)-based highly concentrated electrolyte (HCE), enabled the fabrication of a polymer battery by simple lamination with a metallic lithium anode, where the injection of the electrolyte solution was not required. GPC with high flexibility has a hierarchically continuous three-dimensional porous architecture, which is advantageous for forming continuous ion-conduction paths. The GPE membrane has significant ionic conductivity enough for reliable capacity delivery. Therefore, the fabricated lithium polymer pouch cells demonstrated excellent capacity retention under continuous deformation conditions. This study provides a promising strategy for the fabrication of scalable and flexible 5 V class batteries using GPC and GPE containing SL-based HCE.

11.
Anal Sci ; 38(8): 1025-1031, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35672500

RESUMEN

Isotopic H/D or 6/7Li substitution Raman spectroscopy was applied to new kinds of ionic liquids; N-methylimidazole (C1Im) and acetic acid (CH3COOH) as the pseudo-protic ionic liquid (pPIL), and both of the neat and the 2,2,3,3-tetrafluoropropyl ether (HFE) diluted Li-glyme solvate ionic liquids (SIL) [Li(Gn)][TFSA] (Gn, glyme n = 3 or 4); TFSA, bis(trifluoromethanesulfonyl)amide) to clarify the proton transfer or the Li+ solvation/ion pair formation. The isotopic substitution Raman (ISR) spectra were obtained as the difference between the samples containing the same composition except the substituted isotope. The calculated and theoretical ISR spectra were also evaluated for comparison. With the C1Im-CH3COOH(D) pPIL, the Raman bands attributable to the C1Im/C1HIm+ gave signals of differential shape, and they were well reproduced with the curve fitting by taking the small amount of C1HIm+ and CH3COO- generation into consideration. The ISR spectra for the SIL were well explained by the formation of the Li-TFSA contact ion pair (CIP) and the solvent shared ion pair (SSIP) in the [Li(G3)][TFSA] SIL. In addition, the ISR spectra for the HFE-diluted [Li(G4)][TFSA] SIL clearly proved that the HFE hardly coordinates to the Li+ in the HFE-diluted SIL. Here, the ISR spectroscopy is proposed as a new tool for studying the ion solvation and the ion pair formation in ionic liquids.

12.
Chem Commun (Camb) ; 58(11): 1752-1755, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35029616

RESUMEN

The two-dimensional self-assembly of rufigallol derivatives and their metal coordination were studied by scanning tunnelling microscopy. Ex situ Cu(II)-coordinated rufigallol derivatives exhibited columnar structures with some defects, whereas regular and linear structures were formed upon in situ metal coordination at solid/liquid interfaces.

13.
Chem Commun (Camb) ; 57(100): 13736-13739, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34843614

RESUMEN

The application of diaryltelluronium cations as chalcogen bonding organocatalysts was investigated for the Ritter-like reaction using time-course NMR analysis. The resistance to water of dicationic oligotelluroxanes differed depending on the oligomer chain length and counter anions. The activation mechanism of the substrate was discussed based on DFT calculations.

14.
Chem Commun (Camb) ; 57(87): 11457-11460, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34632990

RESUMEN

A chiral anthranilic pyrrolidine catalyst as a custom-made amine-catalyst was developed for the enantio- and diastereo selective Michael reaction of nitroalkenes with carbonyl compounds. In particular, a peptide-like catalyst in which an α-amino acid is attached to the anthranilic acid skeleton induced the high stereoselectivity of the reaction with aldehydes. Studies of the reaction mechanism indicated that the catalyst exhibits a divergent stereocontrol in the reaction, namely, steric control by a 2-substituted group on the catalyst and hydrogen-bonding control by a carboxylic acid group on the catalyst.

15.
Phys Chem Chem Phys ; 23(11): 6832-6840, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33725042

RESUMEN

The elucidation of elemental redox reactions of sulfur is important for improving the performance of lithium-sulfur batteries. The energies of stable structures of Sn, Sn˙-, Sn2-, [LiSn]- and Li2Sn (n = 1-8) were calculated at the CCSD(T)/cc-pVTZ//MP3/cc-pVDZ level. The heats of reduction reactions of S8 and Li2Sn with Li in the solid phase were estimated from the calculated energies and sublimation energies. The estimated heats of the redox reactions show that there are several redox reactions with nearly identical heats of reaction, suggesting that several reactions can proceed simultaneously at the same discharge voltage, although the discharging process was often explained by stepwise reduction reactions. The reduction reaction for the formation of Li2Sn (n = 2-6 and 8) from S8 normalized as a one electron reaction is more exothermic than that for the formation of Li2S directly from S8, while the reduction reactions for the formation of Li2S from Li2Sn are slightly less exothermic than that for the formation of Li2S directly from S8. If the reduction reactions with large exotherm occur first, these results suggest that the reduction reactions forming Li2Sn (n = 2-6 and 8) from S8 occur first, then Li2S is formed, and therefore, a two-step discharge-curve is observed.

16.
Commun Chem ; 4(1): 158, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36697740

RESUMEN

Controlling the sequence of the three consecutive reactive carbon centres of Cu-allenylidene remains a challenge. One of the impressive achievements in this area is the Cu-catalyzed annulation of 4-ethynyl benzoxazinanones, which are transformed into zwitterionic Cu-stabilized allenylidenes that are trapped by interceptors to provide the annulation products. In principle, the reaction proceeds via a preferential γ-attack, while annulation reactions via an α- or ß-attack are infrequent. Herein, we describe a method for controlling the annulation mode, by the manipulation of a CF3 or CH3 substituent, to make it proceed via either a γ-attack or an α- or ß-attack. The annulation of CF3-substituted substrates with sulfamate-imines furnished densely functionalized N-heterocycles with excellent enantioselectivity via a cascade of an internal ß-attack and an external α-attack. CH3-variants were transformed into different heterocycles that possess a spiral skeleton, via a cascade of an internal ß-attack and a hydride α-migration followed by a Diels-Alder reaction.

17.
Org Lett ; 23(2): 268-273, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33300800

RESUMEN

We developed a nitroxyl-catalyzed bromoesterification of alkenes with bromo reagents, which includes a six-membered ring bromolactonization of alkenyl carboxylic acids catalyzed by AZADO as the nitroxyl radical catalyst, and an intermolecular bromoesterification of alkenes with carboxylic acids using NMO as the N-oxide catalyst. We also accomplished a remote diastereoselective bromohydroxylation via an AZADO-catalyzed six-membered ring bromolactonization and a subsequent ring cleavage reaction with alkylamines to furnish ε-bromo-δ-hydroxy amides with high diastereoselectivity.

18.
Phys Chem Chem Phys ; 22(39): 22508-22519, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33000847

RESUMEN

Intermolecular interaction potentials for benzene, propane, perfluoromethane, furan, thiophene, selenophene, pyridine, phosphorine dimers and benzene-methane, benzene-chlorobenzene, benzene-bromobenzene complexes were calculated using the BLYP, B97 (B98), BP86, BPBE, PBE, PW91, B3LYP, B3PW91, BMK, PBE1PBE, APF, ωB97 (ωB97X), CAM-B3LYP, LC-ωPBE, B2PLYP, mPW2PLYP, TPSS, M06L, M05, M052X, M06, M062X and M06HF functionals with Grimme's dispersion correction methods of D2, D3 and D3BJ versions. The calculated potentials were compared with the CCSD(T) level potentials to evaluate the accuracy of the dispersion corrected DFT methods for calculating the intermolecular interaction energies of hydrocarbon molecules and molecules including heteroatoms (N, P, O, S, Se, F, Cl and Br). The performance of the calculations depends strongly on the choice of the functional and the dispersion correction method. None of the combinations of the functionals and the dispersion correction methods can reproduce well the CCSD(T) level interaction potentials of all the complexes. The improvement of the functionals from GGA to hybrid GGA, meta GGA or meta hybrid GGA is not essential for improving the performance. The significant functional dependence suggests that the scaling factors, which were determined for each functional by fitting, are the cause of the dependence. The performance of the calculations of hydrocarbon molecules is much better than that of the molecules including heteroatoms. A smaller number of molecules including heteroatoms were used for the reference data of the fitting compared with hydrocarbon molecules, which might be one of the causes of the worse performance of the calculations of molecules including heteroatoms.

19.
J Phys Chem Lett ; 11(11): 4517-4523, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32338919

RESUMEN

Lithium-glyme solvated ionic liquids (Li-G SILs) and superconcentrated electrolyte solutions (SCESs) are expected to be promising electrolytes for next-generation lithium secondary batteries. The former consists of only the oligoether glyme solvated lithium ion and its counteranion, and the latter contains no full solvated Li+ ion by the solvents due to the extremely high Li salt concentration. Although both of them are similar to each other, it is still unclear that both should be room-temperature ionic liquids. To distinctly define them, speciation analyses were performed with the Li-G SIL and the aqueous SCES to evaluate the free solvent concentration in these solutions with a new Raman/infrared spectral analysis technique called complementary least-squares analysis. Furthermore, from a thermodynamic point of view, we investigated the solvent activity and activity coefficient in the gas phase equilibrated with sample solutions and found they can be good criteria for SILs.

20.
RSC Adv ; 10(27): 15955-15965, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35493671

RESUMEN

Isocyanurates are cyclic trimers of isocyanate molecules. They are generally known as highly thermostable compounds. However, it is interesting how the thermal stabilities of the isocyanurate molecules will be altered depending on the substituents of their three nitrogen atoms. We performed computational investigations on the thermochemical behaviors of isocyanurate molecules with various alkyl and phenyl substituents. The cyclotrimerization processes of isocyanates are highly exothermic. Our best estimate of the enthalpy change for the cyclotrimerization of methyl isocyanate into trimethyl isocyanurate was -66.4 kcal mol-1. Additional negative cyclotrimerization enthalpy changes were observed for n-alkyl-substituted isocyanates. This trend was enhanced with an extension of n-alkyl chains. Conversely, low negative cyclotrimerization enthalpy changes were shown for secondary and tertiary alkyl-substituted isocyanates. The n-alkyl-substituted isocyanurates were shown to be stabilized due to attractive dispersion interactions between the substituents. Meanwhile, the branched alkyl-substituted isocyanurates were destabilized due to the deformation of their isocyanurate rings. For various alkyl-substituted isocyanates, the sum of the deformation energy of the isocyanurate ring and the intramolecular inter-substituent nonbonding interaction energies was found to be linearly correlated with their cyclotrimerization energies. The cyclotrimerization energy for phenyl isocyanate was shown to have significantly deviated from the linear relationship observed for the alkyl-substituted isocyanurates. This is probably attributable to a remarkable change in the orbital resonance interactions during the cyclotrimerization of phenyl isocyanate to triphenyl isocyanurate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...